Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells.

نویسندگان

  • X Y Zhou
  • H Morreau
  • R Rottier
  • D Davis
  • E Bonten
  • N Gillemans
  • D Wenger
  • F G Grosveld
  • P Doherty
  • K Suzuki
  • G C Grosveld
  • A d'Azzo
چکیده

The lysosomal storage disorder galactosialidosis results from a primary deficiency of the protective protein/cathepsin A (PPCA), which in turn affects the activities of beta-galactosidase and neuraminidase. Mice homozygous for a null mutation at the PPCA locus present with signs of the disease shortly after birth and develop a phenotype closely resembling human patients with galactosialidosis. Most of their tissues show characteristic vacuolation of specific cells, attributable to lysosomal storage. Excessive excretion of sialyloligosaccharides in urine is diagnostic of the disease. Affected mice progressively deteriorate as a consequence of severe organ dysfunction, especially of the kidney. The deficient phenotype can be corrected by transplanting null mutants with bone marrow from a transgenic line overexpressing human PPCA in erythroid precursor cells. The transgenic bone marrow gives a more efficient and complete correction of the visceral organs than normal bone marrow. Our data demonstrate the usefulness of this animal model, very similar to the human disease, for experimenting therapeutic strategies aimed to deliver the functional protein or gene to affected organs. Furthermore, they suggest the feasibility of gene therapy for galactosialidosis and other disorders, using bone marrow cells engineered to overexpress and secrete the correcting lysosomal protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENE THERAPY Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells

Protective protein/cathepsin A (PPCA), a lysosomal carboxypeptidase, is deficient in the neurodegenerative lysosomal disorder galactosialidosis (GS). PPCA / mice display a disease course similar to that of severe human GS, resulting in nephropathy, ataxia, and premature death. Bone marrow transplantation (BMT) in mutant animals using transgenic BM overexpressing the corrective enzyme in either ...

متن کامل

Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells.

Protective protein/cathepsin A (PPCA), a lysosomal carboxypeptidase, is deficient in the neurodegenerative lysosomal disorder galactosialidosis (GS). PPCA(-/-) mice display a disease course similar to that of severe human GS, resulting in nephropathy, ataxia, and premature death. Bone marrow transplantation (BMT) in mutant animals using transgenic BM overexpressing the corrective enzyme in eith...

متن کامل

Correction of murine galactosialidosis by bone marrow-derived macrophages overexpressing human protective protein/cathepsin A under control of the colony-stimulating factor-1 receptor promoter.

Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/m...

متن کامل

Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function.

The protective protein was first discovered because of its deficiency in the metabolic storage disorder galactosialidosis. It associates with lysosomal beta-galactosidase and neuraminidase, toward which it exerts a protective function necessary for their stability and activity. Human and mouse protective proteins are homologous to yeast and plant serine carboxypeptidases. Here, we provide evide...

متن کامل

Lack of PPCA expression only partially coincides with lysosomal storage in galactosialidosis mice: indirect evidence for spatial requirement of the catalytic rather than the protective function of PPCA.

Protective protein/cathepsin A (PPCA) is a pleiotropic lysosomal enzyme that complexes with beta-galactosidase and neuraminidase, and possesses serine carboxypeptidase activity. Its deficiency in man results in the neurodegenerative lysosomal storage disorder galactosialidosis (GS). The mouse model of this disease resembles the human early onset phenotype and results in severe nephropathy and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 9 21  شماره 

صفحات  -

تاریخ انتشار 1995